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The determination of the interfacial tension 
between two liquids 
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The problems commonly encountered in the measurement of the interfacial 
tension between two liquids by capillary tube or force measurement are de- 
scribed. In  order to avoid such problems, a new method of measurement of the 
interfacial tension is developed here which is based on the details of axisymmetric 
capillary waves which can be generated on the interface. Analyses relating these 
details to the interfacial tension and showing how the details can be measured 
photographically are given. An apparatus for making these photographic 
measurements is described and photographs made with such an apparatus are 
presented. An analysis of these photographs is given which gives the interfacial 
tensions for the interfaces shown. 

1. Introduction 
The usual methods of determining the surface tension on a liquid-gas inter- 

face are by measurement of the rise of the liquid in a capillary tube or by measure- 
ment of the force necessary to pull an object, having a known length of edge in 
contact with the interface, off the interface. Success of the capillary tube method 
requires that the contact angle of the liquid on glass in the gaseous environment 
be nearly zero. For many liquid-gas combinations this condition is satisfied and 
accurate determination of the surface tension can be obtained if the glass is 
extremely clean. Devices which measure the force necessary to pull an object 
off the interface typically use a ring of circular cross-section lying horizontally 
on the surface, or a vertical plate with one edge in contact with the surface, as 
the object. If care is taken so that the pulling force is evenly distributed over the 
edge of the object in contact with the fluid surface, an accurate determination of 
the surface tension can be made. 

When the interfacial tension of a liquid-liquid interface is to be determined, 
the problem is much more difficult. Frequently, the capillary rise is into an 
opaque liquid so that it cannot be observed for visual measurement. This problem 
confronted Bartell & Miller (1928), who were attempting to  measure the tension 
on the interface between crude oil and water. They constructed an apparatus 
that allowed visual measurement of the capillary rise of the interface. Figure 1 
shows their apparatus with the figure caption containing a short excerpt from 
their description of its use. 

Recent studies of oil pollution have resulted in renewed interest in determining 
t Present address: Sandia Corporation. 
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the interfacial tension between various oils and water. The reason for this is 
that when an oil slick is thin, its spreading rate is affected by the interfacial 
tensions on the three interfaces between the oil, water and air as shown by Fay 
(1969). The two liquid-air surface tensions can easily be measured by the methods 
described above, but determination of the oil-water interfacial tension is less 
straightforward. 

We have carried out experiments with apparatus of Bartell & Miller as well 
as with an apparatus which operates on the same principle but is easier to use 
(figure 2). The results of repeated experiments with any given apparatus and the 

L W a t e r  

FIGURE 1. The apparatus of Bartell I% Miller, and their description of its use. “In case the 
organic liquid to be used is less dense than water, the latter (about 10 cc or more) is put 
into cup B. It will completely fill the glass tube and will mount to the top of the capillary 
tube. Immediately, the organic liquid is introduced at A so that a liquid-liquid interface 
is formed at the upper end of the capillary. More liquid is added, finally drop by drop 
until the interfacial meniscus is forced down even with the calibration mark at  G.  Readings 
h and h‘, the heights of the organic liquid and water, respectively, above this meniscus, 
are now taken by means of a cathetometer.” (Excerpt from Bartell & Miller (1929).) 

same sources of oil and water were inconsistent with each other. One of the 
reasons for this appears to be that the contact angle of the interface with the glass 
tubes was not fixed. In  fact, in some instances it appeared that the oil wetted the 
glass more than did the water, and in other instances the opposite case was true. 

One of the major difficulties in determining liquid-liquid interfacial tensions 
by the ring or plate method is the selective wetting of the edge, sometimes by 
one of the fluids and sometimes by the other. Further problems occur when the 
interfacial tension is very low. When certain contaminants are present, oil- 
water interfacial tensions less than one dyne per centimetre have been reported. 
When the interfacial tension is this low it is difficult to obtain a small fractional 
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error in the measurement. The error is increased by mechanical vibrations in the 
apparatus, which usually come from external sources, resulting in premature 
parting of the object from the interface. 

Because of the difficulties encountered in determining liquid-liquid interfacial 
tensions by traditional methods, we have devized a method of determining these 
tensions from the details of capillary waves on the interfaces. Initially, attempts 
were made to generate two-dimensional capillarywaves of known frequency on an 
interface in a channel by means of an oscillating wall. Reliable generation of such 
waves on an oil-water interface was found to be impossible owing to emulsifica- 
tion of the oil and water by the wavemaker and other three-dimensionless effects. 

FIGURE 2. The apparatus consists of a U tube, one leg containing the capillary tube C. 
The two legs are joined near their tops by the connecting tube I). To use the apparatus, 
it is rotated to  the left, and the more dense fluid is slowly introduced into tube A until 
the capillary tube is completely filled as shown in (b ) .  Then the less dense fluid is slowly 
added to either A or B or both as the apparatus is rotated into a vertical position. This is 
continued until the less dense fluid completely fills the connecting tube D as shown 
in ( c ) .  The difference in height h between the two interfaces is then measured, and 
T = Brhg(p+ -p-) if the more dense fluid completely wets the apparatus at the interface. 
T = surface tension, T = capillary tube radius, g = acceleration due to gravity, p+ = den- 
sity of heavier fluid, p- = density of lighter fluid. 

More success was obtained with axisymmetric waves in a cylindrical container. 
These waves were generated by a rod positioned along the axis of the container 
with one end near the interface and which was vibrating axially a t  a fixed fre- 
quency. The interfacial tension was then obtained from calculations based on 
photographic records of the waves. 

2. Theory 
The first problem considered here is the determination of the form of in- 

finitesimal axisymmetric waves generated at the centre of the interface between 
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two fluids in a cylindrical container as shown in figure 3. When one of the fluids 
is translucent, points of zero wave height on the interface can be estimated by 
optical methods subsequently described. Therefore, a means of finding the inter- 
facial tension from a knowledge of the positions of zero wave height is needed. 

When small waves are generated on an interface between two fluids by small 
axial sinusoidal oscillations of a rod of radius R,, having one end near the centre 
of the interface (figure 3); the waves propagate radially outwards and, in the 
absence of viscosity, attenuate in height such that their mean energy flux is 
constant as their circumference is increased. Such waves would be reflected from 
the side wall of the container and their height would increase as they propagated 
radially inwards with the resulting combination of ingoing a,nd outgoing waves 
forming a standing wave. When one or both of the fluids have a small amount of 

lil'iril 
FIGURE 3. The apparatus for the generation and photography of axisymmetric waves on 
an interface. A ,  lighter fluid; B, D, heavier fluid; C, camera; I ,  interface; L, incident beam 
of parallel light; M ,  half silvered mirror; R, rod of radius R, whose end generates axisym- 
metric interfacial waves when oscillated in axial direction; S, container whose upper part 
is axisymmetric with radius R,. The lower part need not be axisymmetric because the 
wave motion decreases very rapidly with increasing distance from the interface. 

viscosity, the principal viscous effect on the interfacial waves is a viscous attenua- 
tion of their amplitude as they propagate. I f  the viscous attenuation of a wave 
is small during the time it takes the wave to travel a wavelength, the fluid motion 
is nearly equal to that which would exist in the absence of viscosity, except for 
the small viscous attenuation and thin boundary layers near the interface. If 
the distance over which there is a large viscous attenuation is small compared 
to the radius of the vessel R, the amplitude of the waves incident on the side wall 
will be negligible as will be the amplitude of the reflected wave. 

The conditions of small viscous attenuation over a wavelength and large viscous 
attenuation over a distance equal to the radius of the container are frequently 
met. For this reason, the following analysis will be carried out for a container of 
infinite radius. The wavelengths of the interfacial waves to be considered are 
small compared to the depth of either fluid so the depths will be taken as infinite 
in the analysis. 
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The idealized geometry used for this analysis is shown in figure 4. Since in- 
finitesimal waves are being considered linearized water-wave theory will be used, 
which together with the sinusoidal motions in time of the wave generating rod, 
requires that the entire problem have a sinusoidal time dependence. Therefore, 
equations will be written in terms of the complex amplitudes of physical quan- 
tities. At any point in the sequel, any physical quantity may be formed by 
multiplying its complex amplitude eiwt and subsequently taking the real part. 
Physical quantities are denoted by lower case characters and their complex 
amplitudes are denoted by corresponding upper case characters. 

FIGURE 4. Idea,lized geometry for the wave analysis. h ( ~ ,  t )  is the 
interfacial wave elevation. 

The fluids are considered to be incompressible so velocity potentials @+ and 
@- can be defined in the upper and lower fluids respectively such that 

v* = V W ,  (1) 

where V is the complex amplitude of the fluid velocity. Since viscosity is to be 
neglected, the complex amplitudes of the velocity potentials satisfy Laplace’s 
equation 

VW* = 0. (2) 

The upper and lower boundary conditions are 

lim(V@+l 5 0, 

lim lVW1 5 0. 

Z-+m 

Z+--ao 

The radiation condition at  r = 00 is that the waves must be outgoing. 

(3) 

(4) 
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The linearized condition of continuity at  the interface is 

[@,+I,=, = [@,I,=, = iwH, (5) 

where H is the elevation of the interface. From the linearized Euler equation the 
pressures on the upper and lower sides of the interface are 

P* = -p*gH - [i~p*@*],=,. (6) 

The interfacial tension T requires that 

From (5), (6) and (7 )  the linearized interfacial boundary conditions can be ex- 
pressed as 

[w2(p+@+ -p--@-) -g@,,+(p+ -p-) - ( T / r )  a ( ~ @ k ) / & ] ~ = ~  = 0 (8) 

and [Q,' - @;I = 0. (9) 

For the region r 2 R,, the solution to this boundary-value problem is 

where K~ is defined implicitly by 

W2(p++p-)+Kgg(p+-p-)-TK30 = 0. (11)  

Hi2) is the zeroth-order Hankel function for outgoing waves. Ko(Kr) is the zeroth- 
order hyperbolic Bessel function bounded for large r ,  and A,  and A(K) are de- 
termined by the geometrical details of the oscillating rod and its amplitude of 
oscillation. From (5) and (10) the complex amplitude of the elevation of the 
interface is given by 

A similar problem, for which the radial velocity is specified on r = Ro and for 
which the density of the upper fluid is negligibly small, is the radial wavemaker 
problem which was treated by Havelock (1929), who found a solution similar 
to that above. A well-known result from wavemaker problems is that for 
r > R , + ~ / K ,  the local disturbance given by the second terms of (10) and (12) 
is very small compared to the travelling wave disturbance given by the first 
term in each equation. Therefore, an accurate approximation for the elevation 
of the interface is 

ha(?-, t )  = -Re ( l / iw)  Ko~,Ho(K0r) eiWt 

= (KO/@) l A o l [ - J O ( K O r ) S i n ( w t + 6 ) - N O ( K O r ) C O S ( W t + ~ ) ] ,  (13) 

where 6 = arg (A,).  (14) 

The method of determination of the interfacial tension to be used is to &st 
find K, from the results of optical measurements of the interfacial waves and then 
to determine the tension from (11). The basic mechanical and optical arrange- 
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ment considered is shown in figure 3. The general scheme is to illuminate the 
interface with a nearly parallel light beam and to photograph the interface. The 
purpose of the half-silvered mirror in the apparatus is to physically separate the 
camera and the light source while keeping them both on the same optical axis. 
For purposes of analysis, the light will be considered to be an exactly parallel 
beam and the axes of the light beam and the camera will be taken to be collinear 
as shown in figure 5 .  With reference to figure 5, the distance from the interface 
to the plane of the camera aperture is called d and the diameter of the aperture 

t 
A 

FIGURE 5. Equivalent path for a light beam C entering the camera aperture A.  B is the 
incident light beam and I is the interface. Re H'(r) eiot is the angle between the normal to 
the interface and the vertical z direction. 

is assumed to be much smaller than d so the aperture can be considered as a 
point in the analysis. Geometrical optics will be used, and the angle of reflexion 
of the light from the interface with respect to the normal to the interface will be 
taken as the negative of the angle of incidence. Examination of this idealized 
geometry (figure 5 )  shows that light will be reflected into the camera from a given 
radius r only for one particular surface slope, as given by 
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r 
--RelfoAoH$z)(Kor)ef~t = 0 
2d zw 

From (12) and (15) 

is the condition that must be satisfied for light to be reflected into the camera. 
A graph of the function 

f t (r)  = -- R e e o H i 2 ) ( K , r )  eiot 

for a fixed t and typical values of the various quantities is shown in figure 6. 
As this figure indicates, f t (r)  will have only a finite number of zeros. The zeros 
nearest the origin occur when the second term of (17) is nearly zero and the zeros 

(17) 
r 

2a zw 
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FIGURE 6. A graph of the functionf,(r) as a function of K ~ T  for d = 185 em, K~ = 5.92 em-1, 
o = 70 Hz, Aoeiut = 0.03 (0.995-0.1i) em. 7, positions midway between adjacent zero 
crossings offt; A, zeros in the surface elevation for the conditions of this example. 

farthest from the origin occur where this term is nearly a t  local maximum. A 
photograph of the interface will show concentric bright circles at the radii for 
which f t ( r )  equals zero. The circular wave-number K,, is to be found from such a 
photograph. This cannot be clone by direct comparison with (16) because A,  
is unknown. 

From the characteristics of Hankel functions, it is known that there is one 
radius of zero surface elevation between each pair of adjacent radii of zero slope. 
As K , r  becomes large, the radii of zero surface elevation tend to  locations midway 
between adjacent radii of zero slope. As a result, there is one radius of zero 
surface elevation between adjacent zeros off&) if the fist term of (I 7) is slowly 



The interfacial tension between two liquids 477 

varying compared with the second term. This is the case illustrated in figure 6. 
Apart from the zero in surface elevation nearest the origin the zeros in the 
surface elevation occur for increments in Kor of very nearly n. Figure 6 shows 
the locations of points midway between the zeros of f t ( K )  as well as the posi- 
tions of the radii of zero surface elevation for the particular case considered. 
It can be seen that the spacing between zero crossings increases and decreases. 
Apart from the midpoints between zero crossings nearest the origin, zeros in 
surface elevation are better approximated by midpoints between the more 
closely spaced adjacent zero crossings than by the midpoints of the more widely 
spaced zero crossings. Therefore, the determination of K~ will be based on the 
positions of the midpoints between the more closely spaced zero crossings. If n 
of these midpoints are observable, excluding any midpoints very near the origin, 
the most accurate estimate for K~ is 

where r+ is the radius of the outermost midpoint used and r- is the radius of the 
innermost midpoint used. 

This section concludes with a discussion of the expected differences between 
the characteristics of the idealized model used for the preceding analysis and 
the expected characteristics of an experiment that would be carried out in order 
to measure an interfacial tension. There are three of these differences to be 
considered: the idealized model is for an inviscid fluid, whereas real fluids are 
viscous; the idealized model is for an infinite free surface, whereas an actual 
experiment is carried out in a cylinder of finite radius; and the idealized model 
has an incident light beam that is strictly parallel light, whereas an actual light 
beam has some angular spread. 

The viscosity of actual fluids results in a viscous attenuation of the wave 
amplitude with increasing radius. Examination of figure 6 shows that this will 
cause negligible error in the measurement of K~ if the attenuation is small over 
the distance between adjacent zero crossings of ft(r) used for estimation of the 
positions of zero surface elevation. An approximate calculation of the viscous 
damping of small amplitude two-dimensional gravity waves in a fluid of density 
p and viscosity p has been carried out by Milne-Thomson (1960, pp. 580-1). The 
basis of the approximation is that fluid motion retains its irrotational character 
during the damping process. The result is that the wave amplitude ht behaves as 

where h, is the amplitude of the wave at  t = 0. This formula gives the rate of 
amplitude decay observed while following a single point on the surface moving 
at  the phase velocity of the wave. When an analysis similar to Milne-Thomson’s 
is carried out for axisymmetric cylindrical waves under the influence of both 
gravity and surface tension, the identical result is obtained. For waves on the 
interface of two fluids the result is very similar, 

The error due to the viscous attenuation is related to the decay in wave ampli- 
tude between adjacent zero crossings of ft(r). Use of midpoints between the more 
closely spaced zero crossings results in less error from viscous attenuation than 

K~ = 27472- l ) / ( r+ - r - ) ,  (18) 

h, = ho exp r - 2 4  tP/P1, (19) 

h, = hoexp [ - 2 ~ ~ t ( p + + ~ l - ) / ( p + + ~ - ) ] .  (20) 
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would result from use of midpoints between more widely spaced zero crossings. 
The distances between the closer pairs of zero crossings are typically about one- 
quarter of a wavelength. When the gravity effects are negligible compared to 
interfacial tension effects, equations (11) and (20) give the attenuation over a 
one-quarter wavelength &A as 

This indicates that for given fluids K, should be made as large as possible, con- 
istent with other constraints of the experiment. 

The difference between carrying out the experiment in a vessel of finite radius 
and the model having an infinite radius is that the wall of the vessel reflects the 
wave incident upon it. In  the presence of outgoing and incoming waves, (1  3) 
would take the form 

h,(r,t) = -Re ( l / i w )  eiut[AoH),z)(~or)  + B , H $ l ) ( ~ , r ) l ,  (22) 
where A,  and B, are constants. For non-zero values of B, the subsequent analysis 
would remain entirely unchanged from the preceding analysis apart from intro- 
duction of the two complimentary Hankel functions, and no errors would be 
introduced. 

The effect of having a beam of light with some angular spread is to make the 
bright rings that would appear in a photograph using parallel light take the 
form of bright bands. If the distribution of light intensity were highest in the 
direction of normal incidence on the plane of the undisturbed interface, and the 
brightest part of the bands in a photograph were taken as the zero crossings of 
ft(r), no error would be introduced. However, in actual use the exact position of 
the brightest part of the bands cannot be determined so that some error is intro- 
duced by the angular spread of the light beam. 

3. Experiments 
An experimental apparatus embodying the concepts shown in figure 3 was 

constructed for purposes of measuring interfacial tensions. The cylindrical 
vessel containing the interface had a diameter of 4.5cm and illumination was 
provided by a stroboscopic flash lamp mounted in a parabolic reflector. The 
duration of the flash was about one microsecond. The camera was adjusted to 
give an image magnification of 2: 1, d was 11.43 cm and the camera aperture 
diameter was 0.17 cm. 

In  order to test the apparatus and method, initial tests were carried out on an 
air-tap-water interface. The density of the tap water was 1-0 g/cm3. The surface 
tension of this interface was measured by the capillary tube method as 64 dynes 
cm. Figure 7 (plate 1 )  shows photographs of the interface made with the apparatus 
for oscillation frequencies of 80 Hz. Examination of (1 1) shows that for the con- 
ditions of this experiment the ratios of the second term to the first term, and the 
second term to the third term are very much smaller than unity. Therefore, the 
second term can be neglected yielding 

(23) !P = ( 2 ~ ) ~ f ' ( p +  + p-)/K& 
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Since the wavelength h is directly measured where 

h = Ko/27T, 

a more convenient form of (23) is 

In order to determine the most accurate estimate of A, the distance corresponding 
to as many wavelengths as are accurately observable is measured on a photo- 
graph, and this distance is divided by the number of integer wavelengths to 
obtain A. Values of h as measured from the photographs of figure 6 are 0.395 & 
0.010 cm for the 80 Hz case and 0.305 k 0.005 cm for the 120 HZ case. 

Using (26) gives T = 63-0 2 5.0 dyneslcm for the former case and T = 65.3 _+ 
3.5 dyneslcm for the later case. These values agree with each other and with 
the value of the surface tension measured by the capillary tube method within 
the limits of the error in the measurement of h from the photographs. 

Figure 8 (plate 2) shows photographs of a water-oil interface for oscillation 
frequencies of 20 Hz and 100 Hz. The water was tap water and the oil was South 
Louisiana Crude. The density of the tap water was 1-0 gjcm3 and the density of the 
oil was 0.84 gjcm3. The measured wavelengths are 0.345 2 0.010 cm for the 30 Hz 
case and 0.153 k 0-005 cm for the 100 Hz case yielding values of the interfacial 
tension of 10.8 f 1.0 dynesjcm for the former case and 10.8 0.8 dynesjcm for the 
latter. 

4. Discussion 
Two features of the photographs of the water-oil interface (figure 8) are in 

need of explanation. The first is the outermost bright ring which has nothing to 
do with the waves. This ring results from the angle of the meniscus a t  the ring 
being that value that reflects light into the camera. The wall of the vessel is 
visible near the corners of the photographs indicating that the radial extent of 
the meniscus is unusually large. This is due to the relatively small value of the 
density difference between the oil and water and the relatively small surface 
tension. The second feature is the appearance of the secondary visible bands in 
figure 8(b ) .  The third pair of bright bands corresponds to the outermost pair 
that should be visible according to the theory of $2.  The reasons for the visibility 
of the secondary bands, which are less bright than the primary bands, are not 
known for certain at  this time, but it is thought that they are relatedto theangular 
spread of the incident light beam. 

The experimental results of $ 3 indicate that the theory for measuring liquid- 
liquid interfacial tensions presented in § 2 is sufficiently accurate for use in the 
measurement of such tensions. The primary inaccuracy in such measurements 
is that related to the measurement of the wavelength A. Equation (23) shows that 
the surface tension is proportional to h3 so that small fractional errors in the 
measurement of h lead to substantially larger fractional errors in the resulting 
estimate of the interfacial tension. For this reason it is important to minimize 
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errors in the measurement of h when applying the technique given here for the 
determination of interfacial teiisions. 

This work was supported in part by the U.S. Coast Guard under contract 
number DOT-CG-01-381A. 
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FIGURE 7. Photographs of waves on a. water-air interface with a magnification factor of 
two. (a )  f = 80 Hz, (b )  f = 120 Hz. 
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FIGURE 8. Photographs of waves on an oil-water interface with ~t magnification factor of 
two.  (a) f = 30 Hz, ( b )  f = 100 Hz. 
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